Математика в машинном обучении
Фундаментальные математические дисциплины, необходимые для понимания машинного обучения, — это линейная алгебра, аналитическая геометрия, векторный анализ, оптимизация, теория вероятностей и статистика. Традиционно все эти темы размазаны по различным курсам, поэтому студентам, изучающим data science или computer science, а также профессионалам в МО, сложно выстроить знания в единую концепцию.
Эта книга самодостаточна: читатель знакомится с базовыми математическими концепциями, а затем переходит к четырем основным методам МО: линейной регрессии, методу главных компонент, гауссову моделированию и методу опорных векторов.
Тем, кто только начинает изучать математику, такой подход поможет развить интуицию и получить практический опыт в применении математических знаний,
а для читателей с базовым математическим образованием книга послужит отправной точкой для более продвинутого знакомства с машинным обучением.
Автор:
Дайзенрот Марк Питер
Издательство:
ПИТЕР ИЗДАТЕЛЬСКИЙ ДОМ
Количество страниц:
512
Переплёт:
Мягкая обложка
Язык:
RUS
Отзывы не найдены